Appendix A

A.4.3 Rahoon Ground Investigation **A1**

(091) 841 274

(091) 880 861

Phone:

Fax:

IRISH DRILLING LIMITED

LOUGHREA, CO. GALWAY, IRELAND

CONTRACT DRILLING SITE INVESTIGATION

email: info@irishdrilling.ie

GCOB PHASE 1 GROUND INVESTIGATION

GALWAY

SITE INVESTIGATION

FACTUAL REPORT

Arup, 50 Ringsend Rd., Dublin 4 Galway City Council, City Hall, College Rd., Galway.

Contents:

1.0	Introduction
2.0	The Site & Geology
3.0	Fieldwork
4.0	Ground Conditions
4.1	Groundwater

Site Plan & Location

Appendix 1	Borehole Records
Appendix 2	Laboratory Test Results
Appendix 3	Photographs
Appendix 4	Geophysical Survey Report

1.0 Introduction.

Irish Drilling Ltd. was instructed by Arup to carry out a site investigation for Galway City Outer Bypass (GCOB) Phase 1, on behalf of the client Galway County Council.

The site investigation has been carried out to assess the ground conditions and provide data to assist in the design of earthworks and foundations.

The fieldwork commenced on July 3rd 2014 and was completed on July 23rd 2014.

This Report presents the factual data.

2.0 Site & Geology

The site is located at Knocknacarra on the west side of Galway City. The boreholes are located about 300m apart as shown on the Site Plan.

The geology of the area is generally Glacial Till, overlying the Galway Granite.

3.0 Fieldwork.

The fieldwork consisted of the following:

Two rotary core boreholes were drilled using PQ (84mm dia. core) wire-line drilling equipment, with plastic liner used to assist core recovery and this was reduced to PQ (65mm diameter) below 18.6m in Bh RC-1-001 and 17.0m in Bh RC-1-002.

Standard Penetration Tests were carried out in the overburden in both boreholes.

A standpipe (19mm dia.) was installed in both boreholes, with the response zones extending between 20m and 25m depth.

The boreholes were logged by an engineering geologist from this company. The borehole records are included in Appendix 1.

Laboratory testing was carried out on representative rock samples. Tests included Point Load Index (PLT) and UCS tests. The laboratory test results are presented in Appendix 2.

Photographs of the rock cores are included in Appendix 3.

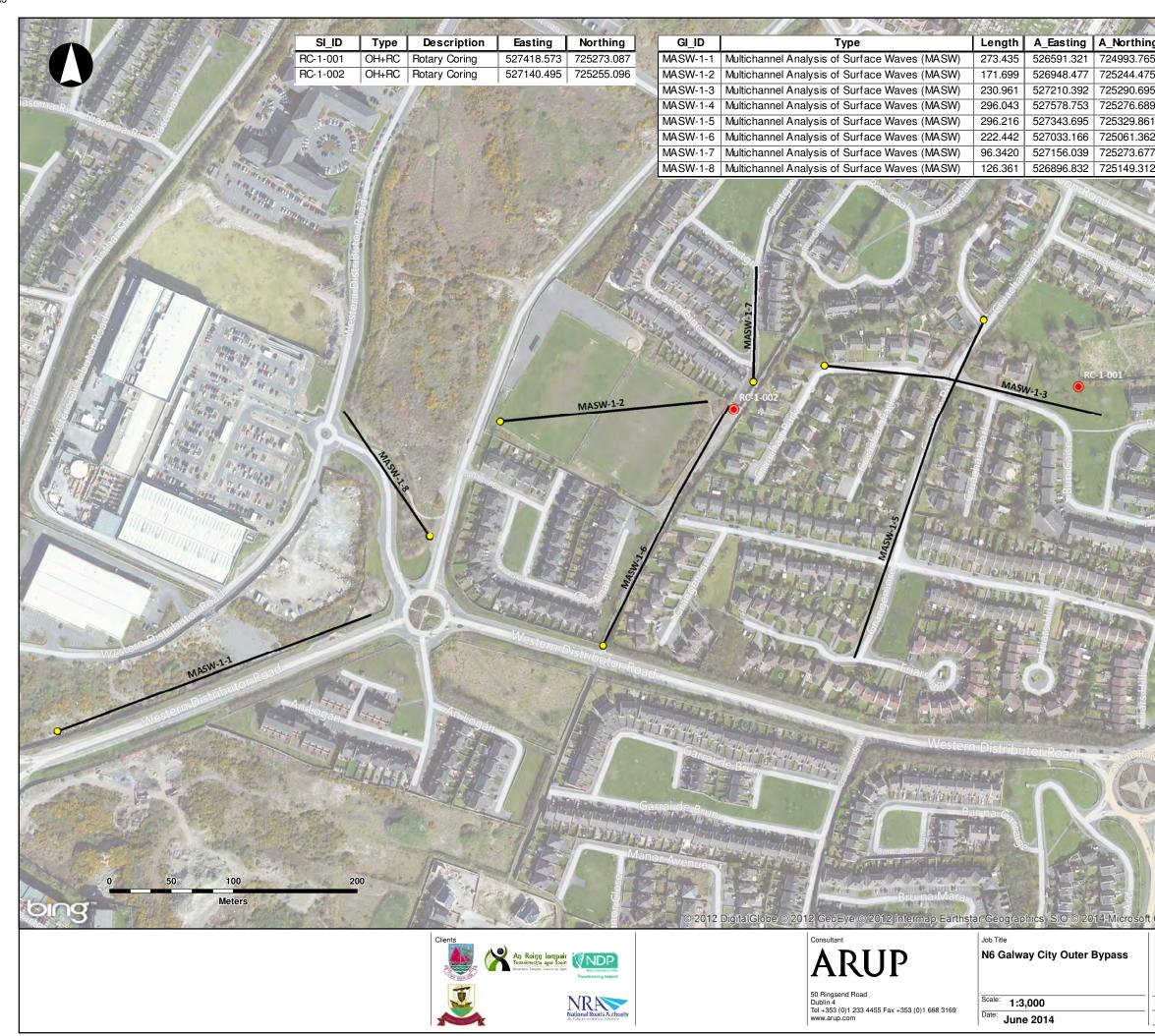
A Geophysical survey was carried out by Minerex Geophysics Limited and the report is included in Appendix 4.

The borehole locations were surveyed, to National co-ordinates, using a Trimble CU Bluetooth Total Station.

4.0 Ground conditions.

Generally the boreholes encountered Glacial till of varying consistency, over granite rock.

Rock was encountered at 5.1m in RC-1-001 and 6.2m in RC-1-002 and generally consists of very strong to extremely strong grey fine to coarse grained granite, microgranite, dolerite and felsic porphyry with predominantly medium spaced and frequently closely spaced fractures.


Reference should be made to the logs in Appendix 1 for detailed descriptions of the soils and rock.

4.1 Groundwater.

Groundwater was recorded in standpipes at the following depths:

Location	RC-1-001	RC-1-002
12 4 214 11 25	2.51	
13 Aug. '14 11:25	3.51m (21.24m O.D.)	6.15m (<i>31.16m O.D.</i>)

Declan Joyce, B.E., M.Eng.Sc., C.Eng., M.I.E.I. Chartered Geotechnical Engineer

1	S. S.	2.	E
g	B_Easting	B_Northing	20
5	526847.633	725089.007	
5	527119.352	725261.282	
5	527437.291	725250.156	
9	527486.312	724997.967	
1	527237.531	725053.702	
2	527136.684	725258.146	10
7	527158.579	725369.986	
2	526825.292	725253.471	10

ROUTE OPTIONS

Legend

Phase One Site Investigation - Boreholes Phase One Site

----- Investigation - Geophysical Surveys

Note: Geophysical survey starting point (A) is displayed using a yellow dot

Coordinate System: IRENET95 Irish Transverse Mercat Projection: Transverse Mercator Datum: IRENET95

Information

Job No

Ordnance Survey Ireland License No. EN 0002814 © Ordnance Survey Ireland/ Government of Ireland

Draw	/ing T	ïtle			
-					

Drawing Title
Geotechnical Information
D 10 11 11 11

233985-00 GCOB-SK-R-600-001 P1

Geotechnical Information Proposed Ground Investigation
Drawing Status

P1	10/06/2014	CMtS	PQ	EMcC
Issue	Date	Ву	Chkd	Appd

APPENDIX 1

BOREHOLE RECORDS

Project	GCOF	B - Phase	1					Loca	tion					Ι	DRILLI	HOLE	No
									Knocknacarra, Galway						RC-1-001		
Job No	~ .		Date 09	-07-14		Grour	nd Level (Co-Ordinates () E 527,416.2 N 725,273.6						1.0-	1-00	•
)14G1	17	16	-07-14			24.7	5	E 52	27,416	.2 N 72	25,273	.6			1 0	
Engineer															heet	1 of	4
L	ARUP													R	ev. 1		
RUI		TAILS			D 1			S	TRATA							- S	Instrument/ Backfill
	TCR (SCR)	(SPT) Fracture	Red'cd	Legend	Deptl (Thick-					SCRIP	TION					Geology	strur vckfi
^{09.07} 0.00	RQD	Spacing	<u>g</u> Level	• <u> </u>	ness)		continuiti	es .10m: overb	Det		ubrounded		ain	or fino	to	Ŭ	A D B
1.00	80 (-) -	1.00(30/40m	um)		- - - - - - - - -	0.00	0 - 3.10 3	. iom. overc	ourden.	cc sli m lit lit	barse GRA ightly sand edium. Gr thologies i mestone ar asts.	VEL w ly clay. avel is ncluding	rith a l Sand of ass g asso	little br is fine orted orted gr	rown and rey		
2.60	50 (-)	2.00 (16)			 (5.10)												
	75 (-)	3.00(54/95m	um)														
09.07 4.10 10.07 4.90	25 (-)	4.00(30/45m	um)		- - - - - - - -												
11.07 6.00 11.07	100 (71) 0	_5.00(30/25m 20	19.65		5.1(Ion-intact as	fractured	ba da m	trong to ex anded gree ark green r ledium gra OLERITE	nish gre ounded ined ph	ey gro and c	undma	ass with ine and		N R
	100 (28) 10	NI			(2.10)												
11.07 7.20 14.07	100 (70) 27	9	17.55		7.20	7.20 clos irre mill	sely space gular, smo ky white o	Discontinuited, dipping a coth, with ~ calcitic smeak grey clay	70 to 720, 0.5mm thic ar and	k							
	Dri	lling Pro	gress and]	Rotary	/ Flush				GENE		
Date	Tin		-	Casing Core Dia Water epth Dia mm Strike Sta					From (m)		/	Returr			REMA		
Date 09-07-14 09-07-14 11-07-14 11-07-14 11-07-14 14-07-14 14-08-14 All dime met Scale	17.0 08.0 08.0 17.0 08.0	$\begin{array}{c cccc} 00 & 4.1 \\ 00 & 4.1 \\ 00 & 6.0 \\ 00 & 7.2 \\ 00 & 7.2 \end{array}$	$\begin{array}{cccc} 0 & 0.00 \\ 0 & 4.10 \\ 0 & 4.10 \\ 0 & 6.00 \\ 0 & 6.00 \end{array}$) 15) 15) 15) 15) 15) 15) 15	0 8 0 8 0 8 0 8 0 8	84 84 84 84 84 84		2.90 2.70 2.60 3.00 2.80 3.51	0 3 6.3	3.00 6.30 30.1	water	100 0% 100	6	extrem diffic 5.1m	er describ mely stroi sult to dril and 18.9 ometer ins	ng and l betwee m.19mn	en
All dime met Scale	nsions in tres	n Client				Method Plant U	V Hyd sed	Ireq			Bit Design		Drill DC	er	Logge	d By EAT	Г

Project	GCOB	- Phase	1				Loca	tion					Ι	DRILLF	IOLE	No
								ocknacarra,					RC-1	0.00	1	
Job No	~		Date 09-	-07-14	Ground Level (m) Co-Ordinates ()									1.0-	-00	•
	014G11	7	16-	-07-14	24.75 E 527,416.2 N 725,273.6									•	4	
Engineer															2 of	4
	RUP												R	ev. 1	1	
RUI	N DET. TCR	AILS (SPT)			Depth		S	TRATA							gy	nent
	(SCR)	Fracture	Red'cd Level	Legend (T	hick- 🗕	D:		DES		HON		A			Geology	nstru ackf
8.10	RQD	Spacing		$\frac{1}{1+1+1}$	ss)	Discontinuitie	es	Det	St	rong to ex	tremel	1ain v stror	ng and		0	л н И
	100 (96) 46	9	_						oc ba wl ma	casionally nded pink	y mediu groun grey an uined pł	im stro dmass d whit nenocr	ong, thi with n te fine a ysts as	nilky and fine and		I. S. V. S.
9.80		10	_													
10.07 10.70 10.07	100 (68) 0	NI														
14.07 11.60 15.07	100 (54) 0	7	_		3.40)											
12.60	100 (81) 60	5	_							.00m: ph ained.	enocrys	sts bec	oming	coarse		
13.60	100 (96) 81	6	_													
14.50	100 (98) 51	6	_													
15.60	100 (97) 78	3	9.15		15.60	15 (0 10 00		··· 1 1	mi 15 wi	.00m to 1 lky white .05m to 1 th dark g	calciti 5.60m	c veins : pink	s and v ground	einlets. Imass		
		7		++++ ++++++++++++++++++++++++++++++++		15.60 - 18.90 spaced to 16.	00m, then r	ndes, closel	y <u>\co</u>	arse.				/		
	Drill	ling Prog		l Water C]	Rotary	Flush				GENE		
Date	Time	e Dept	h Dept	Casing 1 Dia	Core I mm	Dia Wa Strike	ter Standing	From (m)	To (m) Type	Retur	n (%)		REMA	RKS	
Date Date 10-07-14 15-07-14 15-07-14 15-07-14 All dimen met Scale	17.0	0 11.6	0 4.10 0 6.00) 150 150	84 84 84 84		2.90 3.10 2.70						extrem diffic 5.1m	er describe mely stron ult to drill and 18.9r meter inst	g and betwee n.19mr	en
All dimen Market Scale	nsions in tres	Client			Met	thod/ Hyd nt Used	req			Bit Design	<u> </u>	Drill DC	er	Logged	I By EA	Г

Project	GCOB	- Phase	1					Loca	tion					Ι	DRILL	HOLE	No		
					Knocknacarra, Galway Ground Level (m) Co-Ordinates ()										RC-1-001				
Job No	014011		Date 09-	-07-14		Grou					2 11 72	5 070	(•		
Enginee	014G11	/	10-	-07-14			24.75 E 527,416.2 N 725,273.6							SI	heet	3 of	1		
Ŭ	ARUP															5 01	4		
														K	ev. 1		<u>t</u>		
	N DET.	AILS (SPT)			Dept	h		3	TRATA	SCRIP	TION					g	Instrument/ Backfill		
Depth Date	(SCR) ROD	Fracture	Red'cd Level	Legend	(Thick- ness)		scontinuitie	20	DEC		TION	N	Iain			Geology	acki		
17.10	100 (98) 81	2	_		(3.30)	spa loc: ~0. mir	ced, dippi ally irregu 5mm thicl	ing 30 to 32 llar, smooth grey calcit	o, planar, , with a tic smear ar	St ba nd elo fir FI 16	rong to ex inded gree ongated da ne and me ELSIC PC 5.50m to 1 sseminated	tremely ark grea dium g RPHY 7.70m	y stror ndmas en rou rained RY. (: with	s with nded a pheno continu	nd cubic crysts ued)				
17.80	(94) 88 100 (95) 79	3	_																
15.0718.60 16.07	100 (96) 76	7	- 5.85	+ + + + + + + +	18.9 (1.00)	18. me irre yel	dium spac gular, smo) Discontinu ed, dipping both, with ~ am clay sm	22 to 240, 5mm thick	pi bla	xtremely s nk ground ack and da RANITE.	lmass v ark gree	vith gr	ey mill	ky white				
17.90		1	1			19.	90 - 25.80) Discontinu	iities,	Ve	ery strong	to extr	emely	strong					
	100 (95) 72	8	_			spa the	n 30 to 32	ed, locally of ng 20 to 22 o, undulatin m thick grey	o to 22.50n ig, smooth,	n, gr gr r. an	eakly thin een groun een elong ad medium ELSIC PC	dmass ated rou graine	with v unded d phe	white ai and cu	nd dark ibic fine				
21.50	100	8	_		- - - - - - -														
23.00	(97) 69	7	_		(5.90)														
	100 (96) 88	5							1										
		<u> </u>	gress and			rvatio re Dia		ater			Flush	D	(0.1)			ERAL			
23.00 23.00 Date 15-07-14 16-07-14 16-07-14 16-07-14 16-07-14 16-07-14		0 18.6	0 6.00		<u>50 1</u>	re Dia mm 84 65	Strike	standing 3.00 2.50	From (m)	To (m	i) Type	Retur	n (%)	extrem diffic 5.1m	REM er describ mely stro sult to dri and 18.9 ometer ins	ong and 11 betwee 9m.19mr	as en		
All dime	ensions in etres e 1:50	Client	I			Methoo Plant U	d/ Hyd Jsed	lreq			Bit Design	1	Drill DC	ler	Logge	ed By EA	Г		
	C 1.30	1													1				

Project	GCOB	- Phase	1				Loca	ation					Ι	DRILL	HOLE	No	
								ocknacarra,	Galway	·				PC	1-00	1	
Job No			Date 09-	-07-14										NC-	1-00	•	
	014G11	17	16	-07-14		24.75 E 527,416.2 N 725,273.6											
Enginee													Sl	heet	4 of	4	
	ARUP				STRATA												
RU	N DET					1		- 5	Instrument/ Backfill								
Depth	TCR (SCR)	(SPT) Fracture	Reucu	Legend	Depth (Thick-				SCRIP	TION					Geology	strun ckfil	
Date	RQD	Spacing	g Level		ness)	Discontinuit	ies	Det				1ain	-4		Ge	- Ins	
24.60	100 (97)	6	_		-				w gr gr ar	ery strong eakly thin een groun een elong ad mediun ELSIC PC	ly flow dmass ated rou n graine	bande with w unded d pher	d, grey hite and and cu hocryst	yish nd dark ibic fine ts,			
25.90	77	6			25.80	25.80 - 27.0 medium spa	0 Discontinu ced, dipping	uities, 20 to 220,	pi	xtremely s	lmass w	vith bla	ick and	d grev			
27.00	100 (90) 80	8	-2.25	+ + - + + + - +	(1.20) 27.00	undulating, s grey clay sm	smooth, with	n∼1mm thic	k ar pł	nd white finenocrysts RANITE.	ne and as mec	mediu	m grai	ined			
27.00	100 (94) 84	4				27.00 - 29.5 medium spaced, dipp smooth, with smear.	ced, locally ing 38 to 40	closely 0. undulatir	Very strong to extremely strong, thinly flow banded, dark greenish grey groundmass, with elongated rounded and cubic pink and white and rare dark green fine and medium grained, FELSIC PORPHYRY.								
28.60		5	_		(2.50)												
	100 (96) 74	3	4.75		29.50	29.50 - 30.1	0 Discontin	uties closel	v V	erv strong	to extr	emelv	strong	strong, thinly			
16.0730.10		3	-5.35	- +	(0.60) - 30.10	spaced, dipp	oing 38 to 40	o, irregular,	, flo ar gr	ow banded nd grey an rained phe	l groun d white	dmass fine a	, with nd me	black dium			
TEMPLATE.GDT 15/8/14									B	RANITE. H termina struction.	ted at 3	0.10m	i bgl or	n REs			
al	Dril	ling Pro	gress and							' Flush					ERAL		
IDL AGS UK DH (SPTS) GCOB RC1 GPJ IDL TP TEMPLATE.GDT 15/8/14 Date 16-02-17 19-02-17 Date 2014 Date 2014 D	Tim 4 17.0		-	Casing h D) 15	ia n		ater Standing 2.90	From (m)	To (m	n) Type	Return	n (%)	extrendiffic 5.1m		ARKS ed rock ong and ll betwee om.19mr	as en	
All dime	ensions ir etres e 1:50	¹ Client	I		M P	Method/ Hydreq Bit Driller Log Plant Used Design DC							Logge	ged By EAT			

Project	GCOI	3 - Phase	e 1					Loca	tion					Ι	ORILLI	IOLE	E No
									ocknacarra,		r				RC-	1_00	2
Job No			Date 18	-07-14		Grour	nd Level (Co-Ordina	0					1.0-	1-00	~
	014G1	17	23	-07-14			37.3	1	E 52	27,125	.0 N 72	25,237	'.3				
Enginee															heet	1 of	4
	ARUP													R	ev. 1		1
RU		FAILS		1 1		1		S	TRATA							- S	Instrument/ Backfill
Depth Date	(SUK)	(SPT) Fractur	e Red'cd Level	Legend	Depth (Thick-					SCRIP	TION					Geology	Instrume Backfill
^{18.07} 0.00	RQD	Spacin	g Level	0000	ness)		continuiti	es overburden.	Det		ngular to s		lain	adium	to	Ğ	A Ba
0.00			36.81	0 0 0 0 0 0	(0.50) 0.50)	0 - 6.20 :	overburden.		cc lit lit	barse GRA hologies i nestone ar	VEL. ncludir nd pink	Grave gasso grani	l is of a orted gr tic clas	issorted rey ts.		
	63		36.51		0.80)					range brov and is fine					<u> </u>	
	(-)	1.00 (16)		-					\su	ıb-angular rownish g	fine of	limes	tone.	/		
					-					C	LAY with	cobble	es. Sar	ıd is fir	ne.		
					-					cc	ravel is su parse of lin	nestone	e with	rare sa	ndstone		
1.90					-					cl	asts. Cobł	oles are	of lin	nestone			
		2.00 (19)		-												
	42 (-)			<u>i</u>	-												
	-				-												
3.10		3.00 (25			-												
		5.00 (25	,		-												
	75			$\mathbf{C} \mathbf{C}$	(5.40)												
	(-)				-												
		4.00 (18)		-												
4.30					-												
					-												
	82 (-)				_												
	-	5.00(30/25)	nm)	<u> </u>	-												
5.40					-												
	100 (14)			$\tilde{\mathbf{v}} \rightarrow 0$	-												
6.10	0				-												
0.10		8			6.20		0 - 30 00	Discontinui	ties closely	, E	xtremely s	trong a	nd oc	rasiona	lly very		
	100			- + -	-	spa	ced to 8.0	0m, mediur	n spaced to	st	rong, wea	kly tĥic	kly fl	ow ban	ded,		
_	(85) 46				-	54 t	to 560, pla	closely spa anar, locally	/ undulating	, ar	nk ground Id milky v						
18.07 7.20				+ +	-	sme	ooth, with ear and ~0	<0.5mm th 0.5mm thick	ick grey cla ight green		RANIŤE.						
€ <u>18.07 7.20</u> 5 ^{21.07}	100	3			-	calc	careous sn	near.									
9 <u><u><u> </u></u></u>	(100) 100			- + [-												
Date Date 18.07 7.20 21.07 7.60 21.07 7.60 10 Date 10 Date 18-07-14 18-07-14 21-07-12 18-07-14 14-08-14 21-07-14 14-08-14 14-08-14 14-08-14 14-08-14 10 No 14-08-14 14-08-14 10 No 10 Scale											D1 1						
			ogress and			vatio		ater			Flush	Retur	n (0/)		GENE REMA		
Date	Tir 4 08.		-	Casing h Di	ia n	<u>nm</u> 34	Strike	ater Standing	From (m)	10 (m 30.00	/	100 Retur		Drill	er describe		
18-07-14	4 17.	00 7.2	20 6.00) 15	0 8	34		(10	Ū	50.00) water	100	570	extrem	mely stroi		
m 21-07-14 00 14-08-14			20 6.00 standp		0 8	34		6.40 6.15						to dri 19mm	n piezome	eter ins	talled.
1TS) (
H (SF																	
ž																	
Se All dime	etres	n Client									Drill TH/		Logge	i By EA	т		
⊡ Scale	e 1:50		Plant Used Desig								Design		1 Π /	עם		EA	1

Pro	oject	GCOB	- Phase 1						Loca	ation					Ι	ORILLI	HOLE	No
							~			ocknacarra,		ay				RC-	1-00	2
Joł	o No	14011		ate 18-	07-14		Grou	nd Level (Co-Ordina		50 N 72	5 227	2		NO		-
Er	20 nginee	014G11′ r	/	23-	07-14			37.3	1	E 32	27,12	5.0 N 72	25,257	.3	S	heet	2 of	4
	-	ARUP														ev. 1	2 01	-
		N DET	AILS						5	STRATA						CV. 1		nt/
Г		TCR (SCR)	(SPT)	Red'cd		Dept	h					PTION					Geology	Instrument/ Backfill
Dat	e	(SCR) RQD	Fracture Spacing	Level	Legend	(Thick- ness)	Dis	continuiti	es	Det	ail		Ν	lain			Geol	Instr Bacl
	8.90	100 (90) 73	3		+ + - + - + - + + + + + - +							Extremely s strong, wea pink ground and milky v GRANITE.	kly thic lmass, v vhite, co	kly flo with p parse	ow ban ink, bla	ded, ack, grev		
		100 (98) 95	3		+ + + + - + + + + + + +	- - - - - - - -												
	10.50		4		+ + - + - + - + + +	- - - - -												
		100 (98) 92	3			-												
	12.10 12.80	100 (96) 94	2		+ + - + - + - + + + - +													
	4.10	100 (98) 96	2		+ + - + - + - + - + - +													
	4.10	100 (98) 96	2		+ + - + - + - + + + - +	- - - - - - -												
EMPLATE.GDT 15	15.60	100 (100)	3		+ + + + + + + + + + + + + + + + + + + +	- - - - - - -					1	15.40m to 1 becoming b	.7.80m: rownish	grou pink	ndmass	3		
		Drill	ing Progr								Rotar	ry Flush				GENE		
	Date	Time			Casing <u>D</u>		re Dia mm		ater Standing	From (m)		-	Return	n (%)	extremented to dri	REMA er describ mely stroi	ARKS ed rock ng and s	low
All AGS	l dime me Scale	nsions in tres tres	Client	_ I			Method Plant U	l/ Hyd ^J sed	lreq			Bit Design	1	Drill TH/	ler BD	Logge	d By EAT	Г

	Project	GCOB	- Phase	1					Loca	tion					Ι	ORILLI	HOLE	No
										ocknacarra,						RC-	1-00	2
	Job No			Date 18-	07-14		Grour	nd Level (Co-Ordina	0	0.1170				1.0-	1-00/	£
+		014G11	7	23-	07-14			37.3	l	E 52	27,125.	0 N 72	25,237	.3	C1	neet	2	1
	Engineer	RUP															3 of	4
L			AILO												R	ev. 1		¢
╞		N DET.	AILS (SPT)			Depth	h		3	TRATA	SCRIP	TION					gy	Instrument/ Backfill
J	Depth Date	TCR (SCR) RQD	Fracture	Red'cd Level	Legend	(Thick- ness)		continuiti	es	DEC			N	Iain			Geology	nstru 3ack
	16.10 17.70	100 (97) 96 100 (98) 96	0			(23.80)					Ex str pin an GF	ttremely s ong, weal ak ground d milky w RANITE.	trong a kly thic lmass, v vhite, cc <i>(contin</i>	nd occ kly flo with p barse mued)	ow ban ink, bla grained	ded, ick, grey	0	
2:	1.07 19.20 2.07 20.60	100 (98) 97	3	_		-												
	22.10	100 (98) 97	2		+ + + + + + + + + + + + + + + + + +	-												
/8/14	22.90	100 (96) 94	2	_		- - - - - - -												
TEMPLATE.GDT 15	23.90	100 (99) 99	0		+ + + + + + + + + + + + + + + + + + + +	- - - - - -												
dT J		Dril	Ĩ	gress and				ons			Rotary					GENE		
δ	Date 21-07-14 21-07-14 22-07-14	17.0	0 18.6	50 18.6 20 18.6	0 12	ia n 5 8 5 6	re Dia <u>nm</u> 84 65 65	Wa Strike	ter <u>Standing</u> 8.00 8.00 8.00	From (m)	To (m)) Type	Return	n (%)	extrement to dri	REMA er describo mely stron II . n piezomo	ed rock and s	low

Project	GCOF	B - Phase	1					Loca	tion					1	DRILLI	HOLE	No
									ocknacarra,		/				RC-	1_00	2
Job No			Date 18	-07-14		Grou	nd Level (n	n)	Co-Ordina				_		NC-	1-00	2
	014G1	17	23	-07-14			37.31		E 52	27,125	.0 N 72	25,237	.3		1 /	4 0	4
Enginee	er ARUP														heet	4 of	4
														R	ev. 1	1	
	N DET	AILS (SPT)			Depth			8	TRATA		TION					- VS	Instrument/ Backfill
Depth Date	(SUK)	Fractur	e Laval	Legend	(Thick-				DES		TION		r.:			Geology	ackf
	RQD 100	Spacing		+ +	ness)	Dis	continuities	8	Det	E	xtremely s	trong a	lain nd oc	casiona	ally very	0	
	(100) 100			+ +						st	rong, weal	kly thic	klv flo	ow ban	nded		
24.60		0								ar	nd milky v	vhite, co	barse	grainec	l l		
				+ +						G	RANIŤE.	(contin	uea)				
	100		_	++	-												
	(98) 97			+ + [
		1			•												
25.90				+ +													
			_		 - -												
	100 (98)			- + -													
	96	1															
27.00			_	+ +													
	100 (97)			- + -													
	(97) 95	2															
28.00			_	+ +	-												
	100																
	100 (96) 90	4		- + -													
28.90		4															
28.90			_	+ +	-												
	100			- + - + +													
	(96) 80	9		- + +													\gg
		,		+ +													
22.07 30.00 23.07					30.00)				В	H termina	ted at 3	0 00n	n bøl or	n REs		¥///>
											istruction.	iou ui s	0.0011	ii ogi oi	II ICL5		
					- 												
	Dri	lling Pro	gress and	l Water	· Obser	rvatio	ons			Rotary	y Flush				GENE	ER AT	
Date	Tin			$\begin{array}{c} \text{Casing} \\ \text{h} & \mid \end{array} \end{array}$		re Dia		er Standing	From (m)			Return	1 (%)		REMA		
22-07-14		00 30.	00 18.6	0 12:	5 6	65	Same	8.70							er describe		
23-07-14	4 08.0	00 30.0	00 18.6	0 12:		65		8.40						to dri	mely stroi		
														19mr	n piezom	eter inst	alled.
Date 22-07-14 23-07-14																	
-																	
All dim	meiora					<u> </u>							D ""		T	1.0	
All dime	ensions in etres e 1:50	Client	Client Method/ Hydreq Bit Design									Drill TH/	ler BD	Logge	d By EA	Г	

APPENDIX 2

LABORATORY TEST RESULTS

RISH DF	RILLING LTD		1				Contract:	GCOB - F	hase 1	
_oughrea	a Co. Galway	4	St DRILLING				Client:	Galway C	ity Council	
			S				Engineer:	ARUP		
「el: (091) 84	41274 Fax: (091) 880861					Date:	12-Aug-14	4	
. ,		,					Tested by:	DMJ	Checked:	JDJ
Point L	oad Tests	(ISRM	Methods)							Page 1 (
Borehole	Depth	D	W	De ²	Р	ls	F	ls ₍₅₀₎	UCS	Remarks
						MPa		MPa	MPa	
RC-1-001	4.96-5.04	84.7	84.7	7174	21.0	2.93	1.268	3.71	90.91	Strong
	6.60-6.76	84.7	84.7	7174	18.4	2.56	1.268	3.25	79.66	Strong
	7.20-7.45	84.7	84.7	7174	20.0	2.79	1.268	3.53	86.58	Strong
	9.40-9.55	84.8	84.8	7191	50.0	6.95	1.268	8.82	216.07	Extremely Strong
	10.12-10.23	85.0	85.0	7225	40.0	5.54	1.270	7.03	172.22	Very Strong
	10.75-10.90	85.0	85.0	7225	4.0	0.55	1.270	0.70	17.22	Medium Strong
	12.05-12.25	85.0	85.0	7225	19.8	2.74	1.270	3.48	85.25	Strong
	13.00-13.17	85.0	85.0	7225	15.0	2.08	1.270	2.64	64.58	Strong
	14.31-14.50	85.3	85.3	7276	32.3	4.44	1.272	5.65	138.31	Very Strong
	14.74-14.92	85.0	85.0	7225	23.0	3.18	1.270	4.04	99.03	Strong
	16.60-16.76	85.0	85.0	7225	26.0	3.60	1.270	4.57	111.94	Very Strong
	17.67-17.80	85.0	85.0	7225	15.5	2.15	1.270	2.72	66.74	Strong
	18.06-18.30	85.0	85.0	7225	15.0	2.08	1.270	2.64	64.58	Strong
	19.00-19.25	63.1	63.1	3982	37.0	9.29	1.110	10.32	252.81	Extremely Strong
	21.50-21.65	63.1	63.1	3982	18.9	4.75	1.110	5.27	129.14	Very Strong
	23.00-23.20	63.1	63.1	3982	32.8	8.24	1.110	9.15	224.11	Extremely Strong
	24.90-25.08	63.1	63.1	3982	24.0	6.03	1.110	6.69	163.98	Very Strong
	26.07-26.27	63.1	63.1	3982	23.5	5.90	1.110	6.55	160.57	Very Strong
	27.00-27.18	63.2	63.2	3994	17.5	4.38	1.111	4.87	119.28	Very Strong

IRISH DF	RILLING LTD		1				Contract:	GCOB - F	hase 1	
Loughrea	a Co. Galway		DRILLING				Client:	Galway C	ity Council	
		91 -					Engineer:	ARUP		
Tel: (091) 84	41274 Fax: (091) 880861					Date:	12-Aug-14	4	
							Tested by:	DMJ	Checked:	JDJ
Borehole	oad Tests Depth	(ISRM D	Methods) ₩	De ²	Ρ	ls	F	ls ₍₅₀₎	UCS	Page 2 of Remarks
RC-1-002	6.95-7.15	85.1	85.1	7242.01	35.0	MPa 4.83	1.270	MPa 6.14	MPa	
										Vary Strong
1002	7.30-7.45	85.1	85.1	7242.01	60.0	8.28	1.270	10.53	150.42 257.86	Very Strong Extremely Strong
10 1 002										, ,
10 1 002	7.30-7.45	85.1	85.1	7242.01	60.0	8.28	1.270	10.53	257.86	Extremely Strong
	7.30-7.45 8.40-8.60	85.1 63.2	85.1 63.2	7242.01 3994.24	60.0 31.0	8.28 7.76	1.270 1.111	10.53 8.62	257.86 211.29	Extremely Strong Extremely Strong
	7.30-7.45 8.40-8.60 9.00-9.22	85.1 63.2 63.2	85.1 63.2 63.2	7242.01 3994.24 3994.24	60.0 31.0 32.0	8.28 7.76 8.01	1.270 1.111 1.111	10.53 8.62 8.90	257.86 211.29 218.11	Extremely Strong Extremely Strong Extremely Strong
	7.30-7.45 8.40-8.60 9.00-9.22 11.14-11.27	85.1 63.2 63.2 63.2	85.1 63.2 63.2 63.2	7242.01 3994.24 3994.24 3994.24	60.0 31.0 32.0 44.0	8.28 7.76 8.01 11.02	1.270 1.111 1.111 1.111	10.53 8.62 8.90 12.24	257.86 211.29 218.11 299.90	Extremely Strong Extremely Strong Extremely Strong Extremely Strong

5.00 5.22	00.2	05.2	0004.24	02.0	0.01	1.1.1.1	0.50	210.11		
11.14-11.27	63.2	63.2	3994.24	44.0	11.02	1.111	12.24	299.90	Extremely Strong	
12.26-12.41	63.1	63.1	3981.61	45.0	11.30	1.110	12.55	307.47	Extremely Strong	
13.09-13.28	63.2	63.2	3994.24	46.0	11.52	1.111	12.80	313.53	Extremely Strong	
14.55-14.75	63.2	63.2	3994.24	42.5	10.64	1.111	11.82	289.67	Extremely Strong	
15.60-15.82	63.2	63.2	3994.24	38.5	9.64	1.111	10.71	262.41	Extremely Strong	
16.36-16.51	63.2	63.2	3994.24	29.0	7.26	1.111	8.07	197.66	Very Strong	
18.15-18.30	63.2	63.2	3994.24	30.5	7.64	1.111	8.49	207.88	Extremely Strong	
19.50-19.64	63.3	63.2	4000.56	45.0	11.25	1.112	12.50	306.34	Extremely Strong	
20.70-20.86	63.3	63.2	4000.56	49.0	12.25	1.112	13.61	333.57	Extremely Strong	
22.10-22.27	63.2	63.2	3994.24	40.0	10.01	1.111	11.13	272.63	Extremely Strong	
22.90-23.06	63.2	63.2	3994.24	26.0	6.51	1.111	7.23	177.21	Very Strong	
24.40-24.60	63.2	63.2	3994.24	44.0	11.02	1.111	12.24	299.90	Extremely Strong	
25.10-25.30	63.2	63.2	3994.24	28.0	7.01	1.111	7.79	190.84	Very Strong	
26.34-26.54	63.2	63.2	3994.24	38.5	9.64	1.111	10.71	262.41	Extremely Strong	
27.34-27.48	63.2	63.2	3994.24	31.5	7.89	1.111	8.76	214.70	Extremely Strong	
28.54-28.67	63.2	63.2	3994.24	21.0	5.26	1.111	5.84	143.13	Very Strong	
29.00-29.20	63.2	63.2	3994.24	6.0	1.50	1.111	1.67	40.89	Medium Strong	

Irish Drilling Ltd

Uniaxial Compressive Strength of rock cores ASTM D7012-07

Contract	GCOB Phase 1 Ground Investigation	Job Code:	14G117
Client	Galway City Council	Date:	12/08/2014
Engineer	ARUP Consulting Engineers	Tested By:	DMJ

Borehole No:	Depth (m)	Sample Diameter (mm)	Sample Length (mm)	Bulk density · (Mg/m3)	Test Duration (secs)	Mode of Failure	Maximum Load (kN)	00	Strength Designation:BSEN ISO14689-1:2003
RC-1-001	8.40-8.70	84.97	181.47	2.630	167.0	Vertical Shear	211.00	37.2	Medium Strong
	12.70-13.00	85.02	186.93	2.630	170.0	Vertical Shear	186.80	32.9	Medium Strong
	17.43-17.70	85.06	186.66	2.720	231.0	Vertical Shear	133.20	23.4	Weak
	23.50-23.86	63.05	157.24	2.660	105.0	Diagonal	66.80	21.4	Weak

Irish Drilling Ltd

Uniaxial Compressive Strength of rock cores

ASTM D7012-07

Contract	GCOB Phase 1 Ground Investigation	Job Code:	14G117
Client	Galway City Council	Date:	12/08/2014
Engineer	ARUP Consulting Engineers	Tested By:	DMJ

Borehole No:	Depth (m)	Sample Diameter (mm)	Sample Length (mm)	Bulk density · · · (Mg/m3)	Test Duration (secs)	Mode of Failure	Maximum Load (kN)	Compressive Strength (MPa)	Strength Designation:BSEN ISO14689-1:2003
RC-1-002	6.22-6.42	84.99	172.93	2.630	200.0	Vertical Shear	294.80	52.0	Strong
	9.22-9.62	63.19	157.38	2.620	193.0	Vertical Shear	220.50	70.3	Strong
	12.85-13.09	63.09	151.24	2.640	359.0	Vertical Shear	537.40	171.9	Very Strong
	16.10-16.36	63.10	153.33	2.640	210.0	Vertical Shear	297.50	95.1	Strong
	22.42-22.59	63.50	137.60	2.600	287.0	Vertical Shear	349.70	110.4	Very Strong

APPENDIX 3

PHOTOGRAPHS

APPENDIX 4

GEOPHYSICAL SURVEY

Galway City Outer Bypass Phase 1

Geophysical Survey

Report Status: Draft MGX Project Number:5820 MGX File Ref: 5820d-005.doc 23rd July 2014

Confidential Report To:

Irish Drilling Limited Old Galway Road Loughrea Co. Galway **Arup** 50 Ringsend Road Dublin 4

Report submitted by : Minerex Geophysics Limited

Issued by:

Unit F4, Maynooth Business Campus Maynooth, Co. Kildare Ireland Tel.: 01-6510030 Fax.: 01-6510033 Email: <u>info@mgx.ie</u>

Ruth Jackson (Senior Geophysicist)

Hartmut Krahn (Senior Geophysicist)

Subsurface Geophysical Investigations

EXECUTIVE SUMMARY

- 1. Minerex Geophysics Ltd. (MGX) carried out a geophysical survey consisting seismic refraction (p-wave) and MASW (s-wave) for the ground investigation of the N6 Galway City Outer Bypass, at Rahoon, Galway city.
- 2. The main objectives of the survey were to determine ground conditions, estimate the depth to bedrock and the strength of the overburden.
- 3. Ground conditions were modelled with four layers that represent the transition from soft/loose overburden to strong granite rock.
- 4. The uppermost layer is generally thin (1m) and comprises topsoil, made ground, overburden and solid pavement surfaces. The geological material within this layer is soft or loose.
- 5. Layer 2 has a thickness of 1 to 5 m and mainly overburden with firm stiff compaction but may contain some very weathered granite, especially large boulders.
- 6. A transitional layer between overburden and fresh granite bedrock contains poor to fair weathered granite or some highly consolidated hard or very dense overburden material.
- 7. The depth to top of strong granite rock varies between 3 and 12 m bgl. below the survey profiles.
- 8. The rock is generally shallower on the higher elevated parts of the survey area. The transitional layer 3 containing weathered rock and highly consolidated overburden is usually thicker where is appears deeper under the ground surface.
- 9. The MASW survey showed results with mixed quality due to shallow rock and changing ground conditions. Ranges for shear wave velocity and small strain shear modulus (G_{max}) have been defined for the overburden. Values of 150 500 m/s for velocity and 45 500 MPa for G_{max} have been modelled.

CONTENTS

1.	INTRODUCTION1
1.1	Background1
1.2	Objectives1
1.3	Site Description1
1.4	Geology1
1.5	Report2
2.	GEOPHYSICAL SURVEY
2.1	Methodology3
2.2	Seismic Refraction3
2.3	MASW (Multichannel Analysis of Surface Waves)4
2.4	Site Work4
3.	RESULTS AND INTERPRETATION
3.1	Seismic Refraction Data5
3.2	MASW
4.	CONCLUSIONS AND RECOMMENDATIONS9
5.	REFERENCES10

List of Tables, Maps and Figures:

Title	Pages	Document Reference
Table 1: Data Acquisition Parameters for Geophysical Profiles	In text	In text
Table 2: Summary of Results and Interpretation	In text	In text
Table 3: MASW S-Wave Velocity	In text	In text
Map 1: Geophysical Survey Location Map	1 x A3	5820d_MapsFigs.dwg
Figure 1a: Models of Geophysical Survey	1 x A3	5820d_MapsFigs.dwg
Figure 1b: Models of Geophysical Survey	1 x A3	5820d_MapsFigs.dwg
Figure 1c: Models of Geophysical Survey	1 x A3	5820d_MapsFigs.dwg
Figure 1d: Models of Geophysical Survey	1 x A3	5820d_MapsFigs.dwg
Figure 2a: Interpretation of Geophysical Survey	1 x A3	5820d_MapsFigs.dwg
Figure 2b: Interpretation of Geophysical Survey	1 x A3	5820d_MapsFigs.dwg
Figure 2c: Interpretation of Geophysical Survey	1 x A3	5820d_MapsFigs.dwg
Figure 2d: Interpretation of Geophysical Survey	1 x A3	5820d_MapsFigs.dwg
Appendix A: Results of MASW Survey	1 x A3	5820d_AppA.pdf

1. INTRODUCTION

1.1 Background

Minerex Geophysics Ltd. (MGX) carried out a geophysical survey for the Galway City Outer Bypass (GCOB) Phase 1. The survey consisted of seismic refraction (p-wave) and MASW (s-wave) measurements for the ground investigation. The survey was commissioned by Irish Drilling Ltd. acting on behalf of Arup.

The role of geophysics as a non-destructive fast method is to allow later targeted direct investigations. Those results can be used to improve the initial results and interpretation.

The proposed development is along the existing roads and open park areas, with approx. 1720 m of geophysics to be carried out.

The survey was aimed both at investigating the depth to intact rock using seismic refraction, while using MASW along the same lines to measure the shear wave velocity and small strain shear modulus of the overburden.

1.2 Objectives

The main objectives of the geophysical survey were:

- To determine the depth to bedrock
- To estimate the strength/stiffness/compaction of overburden materials and the quality of rock
- To determine the type of overburden and rock

1.3 Site Description

The site is located at Rahoon in Galway city. The site consists of a residential area bounded by the Western Distributor Road.

1.4 Geology

Ground conditions are summarised as made ground (asphalt, concrete pavements, granular fill) over natural sandy gravelly till. The bedrock geological map of Galway Bay (GSI, 2004) indicates that the survey area is underlain by Devonian granite.

1.5 Report

This report includes the results and interpretation of the geophysical survey. Maps, figures and tables are included to illustrate the results of the survey. More detailed descriptions of geophysical methods and measurements can be found in GSEG (2002), Milsom (1989) and Reynolds (1997).

The client provided maps of the site and the digital version were used as the background map in this report. Elevations were surveyed / taken from the supplied maps and vertical sections.

The interpretative nature and the non-invasive survey methods must be taken into account when considering the results of this survey and Minerex Geophysics Limited, while using appropriate practice to execute, interpret and present the data, give no guarantees in relation to the existing subsurface.

2. GEOPHYSICAL SURVEY

2.1 Methodology

The methodology consisted of MASW in conjunction with seismic refraction as outlined in the tender documents.

The survey locations are indicated on Map 1. The profiles, locations, chainage and parameters are tabulated in Tab. 1.

All geophysical surveys are acquired, processed and reported in accordance with British Standards BS 5930:1999 +A2:2010 'Code of Practice for Site Investigations'.

Line Number	Profile Name	Geophone Spacing/m	Profile Length/m
Line 1	S33 - 38	2	286
Line 2	S6 - 9	2	176
Line 3	S12 - 14	2	218
	S18 - 19		
Line 4	S27 – 32	2	286
Line 5	S20 - 26	2	300
Line 6	S1 - 5	2	238
Line 7	S10 - 11	2	94
Line 8	S15 - 17	2	128

Table 1: Data Acquisition Parameters for Geophysical Profiles	Table 1: Data Acquisition Parameter
---	-------------------------------------

2.2 Seismic Refraction

The seismic survey consisted of p-wave seismic refraction profiling at the locations shown on Map 1. Each of the profiles consisted of 24 geophones with 2 m spacing, resulting in lengths of 46m per profile. The recording equipment consisted of a 24 Channel GEOMETRICS ES-3000 engineering seismograph with 4.5 Hz vertical geophones. The seismic energy source consisted of a hammer and plate. A zero delay trigger was used to start the recording. At least 7 shot points per p-wave profile were used.

In the seismic refraction survey method a p-wave is generated by a source at the surface resulting in energy travelling through surface layers directly and along boundaries between layers of differing seismic wave velocities. Processing of the seismic data allows geological layer thicknesses and boundaries to be established.

Seismic Refraction generally determines the depth to horizontal or near horizontal layers where the compaction/strength/rock quality changes with an accuracy of 10 - 20% of depth to that layer. Where low velocity layers or shadow zones are present or where layers dip with more than 20 degrees angle the accuracy becomes much less.

In areas with thick concrete or tarmac a low velocity layer exists for the seismic waves below the hard surface layer. This makes it less certain or impossible to pick first breaks from geophones near the source and therefore no velocity determination for the shallow subsurface is possible. This results in larger deviations in the modelling and borehole results are required for a final calibration of the results.

During the survey hard standing surfaces were avoided as much as possible but in some locations the survey had to follow the road or footpath. On Line 4 at S29 and S30 the survey went over a heavily reinforced concrete footpath and a negative effect was caused for the data. On Line 3 at S18 and S19 there was also some detrimental effect on the data from the solid surface layer.

2.3 MASW (Multichannel Analysis of Surface Waves)

The seismic shear wave velocity was determined by active MASW surveying. MASW (Multi-Channel Analysis of Surface Waves) determines the bulk seismic shear wave velocity versus depth. The velocities are used to determine the small strain shear modulus versus depth.

The MASW method was acquired along with the seismic refraction survey though the shots were done with a larger time window. The MASW used 24 geophones with 2 m spacing and a length of 46m per profile. The recording equipment consisted of a 24 Channel GEOMETRICS ES-3000 engineering seismograph with 4.5 Hz vertical geophones. The seismic energy source consisted of a hammer and plate. A zero delay trigger was used to start the recording.

Many constraints exist for the MASW method and the main factors on this site that affect the methods are strong vertical velocity gradients, lateral changing velocity structure and shallow rock along some of the profiles.

2.4 Site Work

The data acquisition was carried out between the 3rd and 8th of May 2014. The weather conditions were variable throughout the acquisition period. Health and safety standards were adhered to at all times. While working on roadways the area was clearly highlighted by the use of warning signs and cones and a traffic management system was in place. Road work was carried out at night when traffic was at a minimum.

The locations and elevations were surveyed with a TRIMBLE RTK-GPS to accuracy < 0.02m.

3. **RESULTS AND INTERPRETATION**

The interpretation of geophysical data was carried out utilising the known response of geophysical measurements, typical physical parameters for subsurface features that may underlay the site, and the experience of the authors.

3.1 Seismic Refraction Data

The seismic refraction data was positioned and processed with the SEISIMAGER software package to give a layered model of the subsurface. The numbers of layers has been determined by analysing the seismic traces and up to 4 layers were used in the models. All seismic profiles were subject to a standardised processing sequence which consisted of a topographic correction which was based on integrated elevation data, first break picking, tomographic inversion, travel-time computation via ray-tracing and velocity modelling. Residual deviations of typically 0.5 to 1.5 msec RMS have been obtained for each profile. Following each processing stage QC procedures were adhered to. The resulting layer boundaries are shown as thick lines on the cross sections (Figures 1a - 1d). The average seismic velocities obtained within the layers are annotated on the sections as bold black numbers.

Layer 1 is generally thin (1m) and comprises topsoil, made ground, overburden and solid pavement surfaces. The seismic velocity of 300 - 500 m/s indicates that the geological material in this layer would be mainly soft or loose in term of stiffness and compaction.

Layer 2 was modelled with a velocity range of 800 – 1100 m/s and has a general thickness between 1 to 5 m. This layer is mainly overburden with firm – stiff compaction but may contain some very weathered granite, especially large boulders. The layer can be excavated by digging with some ripping. Large boulders may have to be broken up.

Layer 3 velocities of 2200 - 2400 m/s indicate a poor to fair weathered granite or some highly consolidated hard or very dense overburden material. The average depth to the top of this layer is 4 m but is variable along the profiles. The elevation/depth can be seen on the sections for the profiles in Figures 1a - 1d. The excavatability for this layer is rippable to marginal rippable though may require some breaking where large residual granite boulders are present.

The depth to top of strong rock (Layer 4 with a seismic velocity of 4400 - 4600 m/s) varies between 3 and 12 m bgl. under the survey profiles. This layer requires breaking/blasting for removal.

Table 2 summarises the interpretation. The strength/stiffness/compaction and the rock quality have been estimated from the seismic velocity. The estimation of the excavatability for the bedrock has been made according to the caterpillar chart published in Reynolds (1997). The geotechnical assessment for rippability will have to take factors like rock type and jointing into account and the estimation in this report is solely based on the seismic velocities. Excavation of rock may not be required for the future development but it gives a good indication about the rock quality.

Interpreted cross sections are shown in Figures 2a - 2d. The interpretation has been made by delineating four different layers according to their seismic velocity.

Layer	General Seismic Velocity Range (km/sec)	Compaction/ Strength/ Rock Quality	Interpretation	Estimated Excavation Method
1	300 - 500	Soft/Loose	Topsoil/Overburden/Pavement	Diggable
2	800 - 1100	Firm-Stiff/Dense	Overburden or very weathered granite	Diggable/Rippable
3	2200 – 2400	Poor – fair Rock Hard/Very dense	Weathered Granite or highly consolidated overburden	Rippable/Marginal rippable/Some breaking
4	4400 - 4600	Strong competent Rock	Strong Granite	Breaking & Blasting

Table 2: Summary of Results and Interpretation

Draft results for rotary core holes indicate a similar depth to rock in drilling and geophysical survey.

3.2 MASW

The MASW profiles were positioned, processed, analysed and modelled with the SEISIMAGER/SW and the SURFSEIS3 software packages. The objective is to obtain a profile of shear wave velocity versus depth and to calculate the small strain shear modulus (stiffness) Gmax from the velocities.

For the interpretation the end shots and some other shots of each profile were analysed in order to extract the best possible dispersion curves for the modelling stage. The selected shot points were then allocated to distances along profiles and one shot (most representative of the profile) is used in the display of the results for the MASW data (Appendix A).

Following processing steps are done to achieve this:

- 1. Edit the shot point geometry and display the shot points for each profile
- 2. A dispersion curve (phase velocity versus frequency plot) is computed
- 3. The maximum amplitudes of the dispersion curve are selected and then the picks for the dispersion curve are truncated (frequency gate) and smoothed
- 4. An initial model of shear-wave velocity versus depth $V_{\rm s}$ is computed

- 5. An inversion is carried out to create the final V_s curve (Shear wave versus depth)
- 6. For stable repeatable results the shear wave velocity versus depth is displayed
- 7. The small strain shear modulus (also named Gmax) for each shot point and depth has been computed by using a density of 2000kg/m³ typical for highly consolidated overburden (Eq. 1)
 - (Eq. 1) $G = V_s^2 * \rho * 10^{-6}$

Where G = Shear Modulus (MPa)

V_s = Seismic Shear Wave Velocity (m/s)

 $\rho = \text{Density} (\text{kg/m}^3)$

Intensive efforts have been made to extract the best dispersion curves by time gating, trace selecting and test processing various sources versus receiver trace distances and trace ranges and by directional selection of traces. The MASW method works best on profiles where the velocity increases continuously with depth rather than where sudden velocity jumps occur (e.g. shallow rock).

Appendix A shows the results for a shot point from each line. The images for each shot are the shot record, the dispersion image (phase velocity – frequency transformation, dispersion image) and the shear wave velocity versus depth model.

These examples show the large variation of quality and quality of the shear waves and dispersion images. The first example (Line 1, Profile S36) shows a good fan of surface waves (left image) and a clear dispersion curve (indicated by the blue-green central zone within the red that rises at lower frequencies). The resulting model of s-wave velocity versus depth is well defined, the dark grey zone indicates the depth range covered by the model (The light grey part of the model at shallow and deep depths is only required for the numerical model but does not represent the ground).

The second example (Line 2, Profile 9) shows no good fan of surface waves and the dispersion image is poor, with the velocity picks only roughly indicating a possible ground model.

Table 3 give the ranges for s-wave velocities and small strain shear modulus along each profile line. The values are representative for the overburden material as the depth range generally falls within the overburden. Some comments are made about the quality of the dispersion curves and which distances along the profile the data is best.

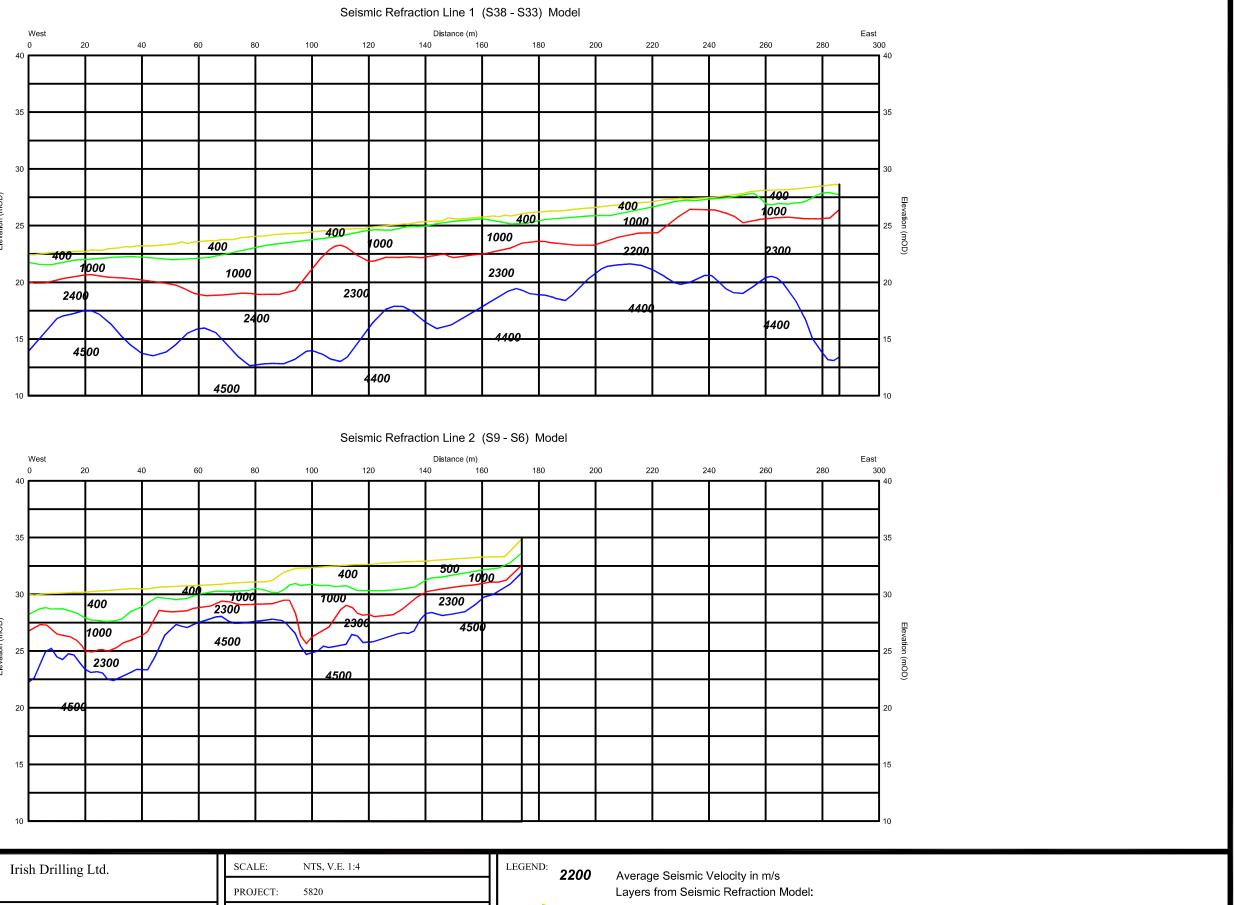
Line	Range of S-Wave	Range of Small Strain	Comments
	Velocities (m/s)	Shear Modulus (MPa)	
	along profile	along profile	
1	300 - 600	180 – 720	Good dispersion curves, the ranges are valid for the entire length of Line 1
2	300 - 400	180 – 320	Poor curves, the ranges are only apparent on some of the shots from this profile and rock velocities start to show on the dispersion curves as the rock is quite shallow and the layer surfaces quite ragged
3	150 - 500	45 – 500	Good curves, the lowest values of 150 are appearing at the end of the profile (S14) where the rock is also quite deep
4	150 - 350	45 – 245	Good curves for the relatively shallow overburden range
5	200 - 650	80 – 845	Good curves for the first half of the line, for the second part the rock is relatively shallow and high rock velocities rather than lower overburden velocities are dominating the second half of Line 5
6	300 - 600	180 – 720	Poor curves as rock is relatively shallow, only the start of the profile shows good results for the overburden
7	400 - 850	320 – 1445	Poor curves on the first half of the profile with better values for overburden on the second half where the rock is deeper
8	350 - 500	245 – 500	Good curves for the overburden range

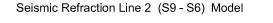
Table 3: MASW Shear Wave Velocity

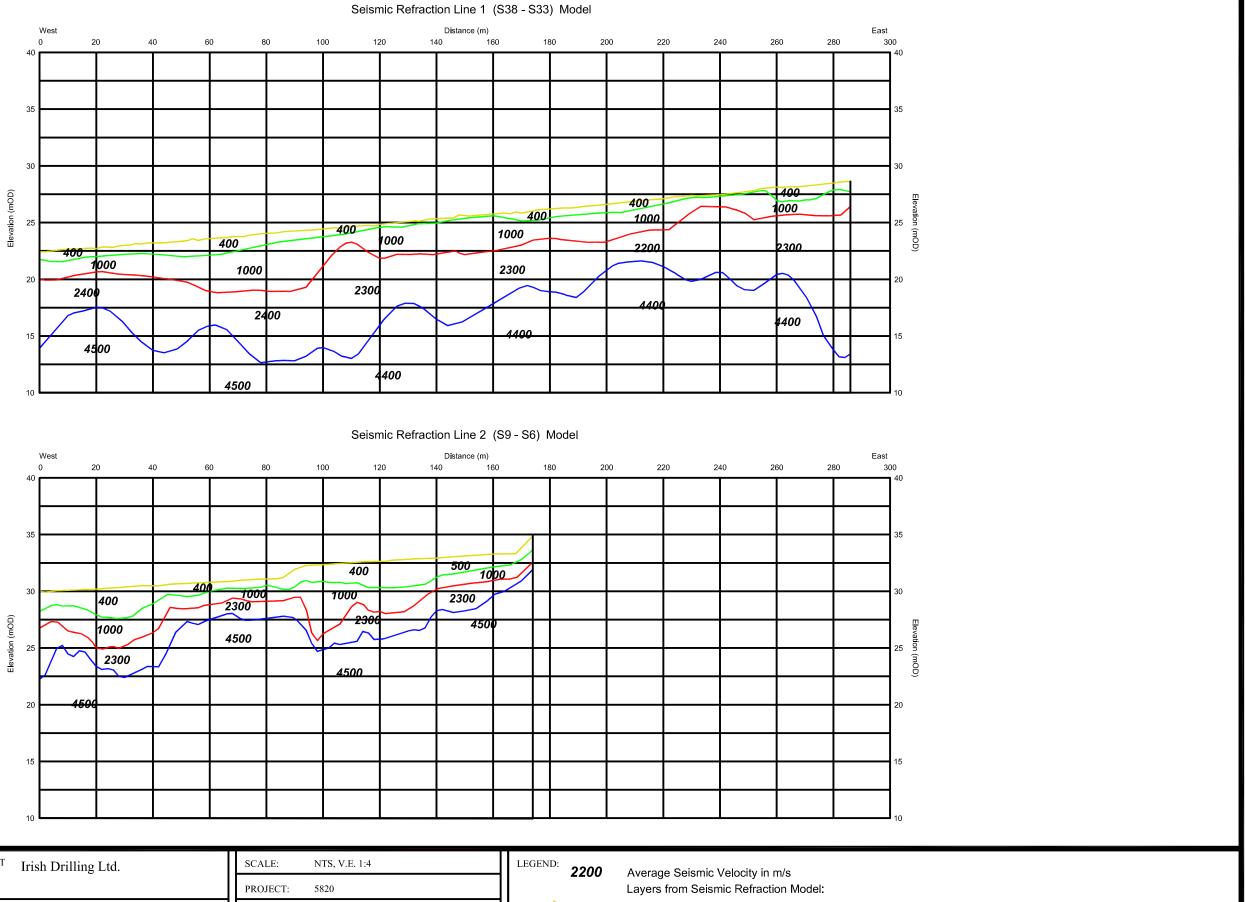
The lowest recorded s-wave velocities are 150 m/s so it can be said that there is no very soft ground like peat, organic sediments or soft silt present under the survey profiles.

4. CONCLUSIONS AND RECOMMENDATIONS

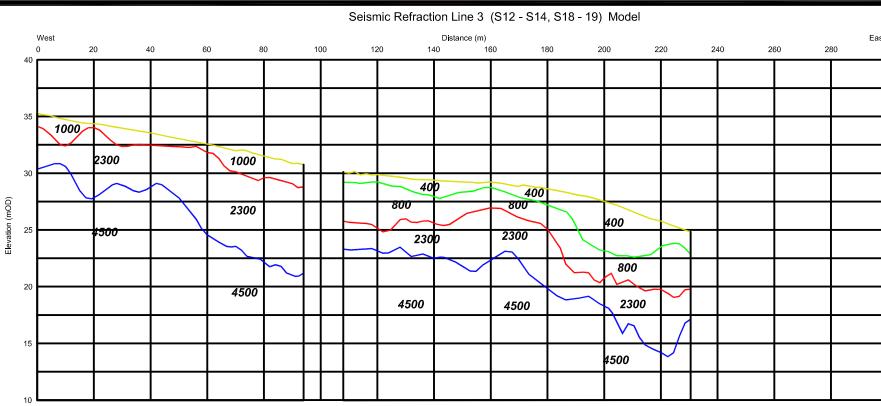
The following conclusions and recommendations are made:

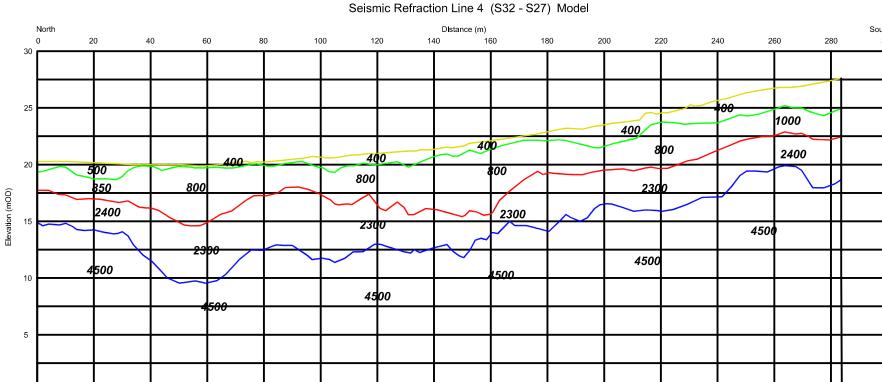

- The geophysical data from the GCOB Phase 1 survey shows that the subsurface geology can be represented by a four layer model with a transition from soft and loose overburden to strong granite rock.
- Layer 1 is generally thin (1m) and comprises topsoil, made ground, overburden and solid pavement surfaces.
- Layer 2 is mainly overburden with firm stiff compaction but may contain some very weathered granite, especially large boulders. This layer has a thickness of 1 to 5 m.
- Layer 3 is a transitional layer between overburden and bedrock. It is a poor to fair weathered granite or some highly consolidated hard or very dense overburden material. The average depth to the top of this layer is 4 m but is variable along the profiles.
- The depth to top of strong granite rock varies between 3 and 12 m bgl. below the survey profiles.
- The rock is generally shallower on the higher elevated parts of the survey area. The transitional layer 3 containing weathered rock and highly consolidated overburden is usually thicker where is appears deeper under the ground surface.
- The MASW survey showed results with mixed quality due to shallow rock and changing ground conditions. Ranges for shear wave velocity and small strain shear modulus (G_{max}) have been defined for the overburden. Values of 150 500 m/s for velocity and 45 500 MPa for G_{max} have been modelled.

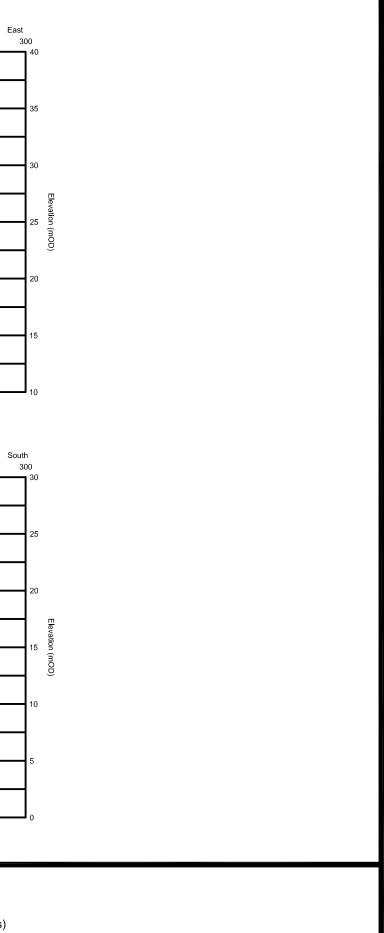

5. **REFERENCES**

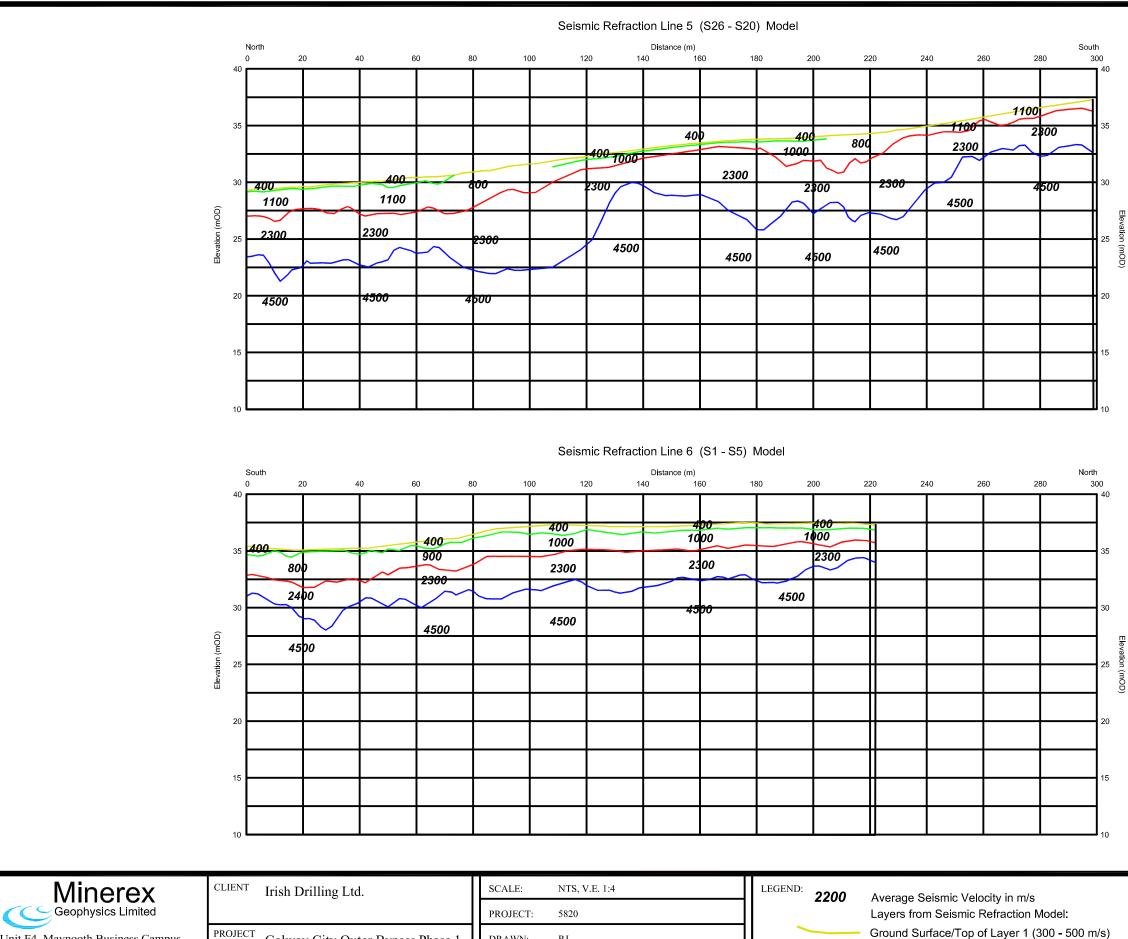

- 1. **GSEG 2002.** Geophysics in Engineering Investigations. Geological Society Engineering Geology Special Publication 19, London, 2002.
- 2. **GSI, 1995.** Geology of South Cork. Geological Survey of Ireland 1995.
- 3. Milsom, 1989. Field Geophysics. John Wiley and Sons.
- 4. Reynolds, 1997. An Introduction to Applied and Environmental Geophysics. John Wiley and Son.

	Car park		
	D Line 8	Sports Ground Line 2	
	Under const.	Gort Bio	
Line 1	534 534		34 33 2
T 536			
38KN ALTAN	m 100m		
	CLIENT Irish Drilling Ltd.	SCALE: 1:2500 @ A3 PROJECT: 5820	LEGEND:
Unit F4. Maynooth Business Campus	PROJECT Galway City Outer Bypass Phase 1	DRAWN: RJ	Seismic Refraction and MASW Profile
Maynooth, Co. Kildare Tel. (01) 6510030 Fax. (01) 6510033	Geophysical Survey	DATE: 14/07/2014	
Email: info@mgx.ie Web: www.mgx.ie	TITLE Map 1: Geophysical Survey	MGX FILE: 5820d_MapsFigs.dwg	
	Location Map	STATUS: Draft	

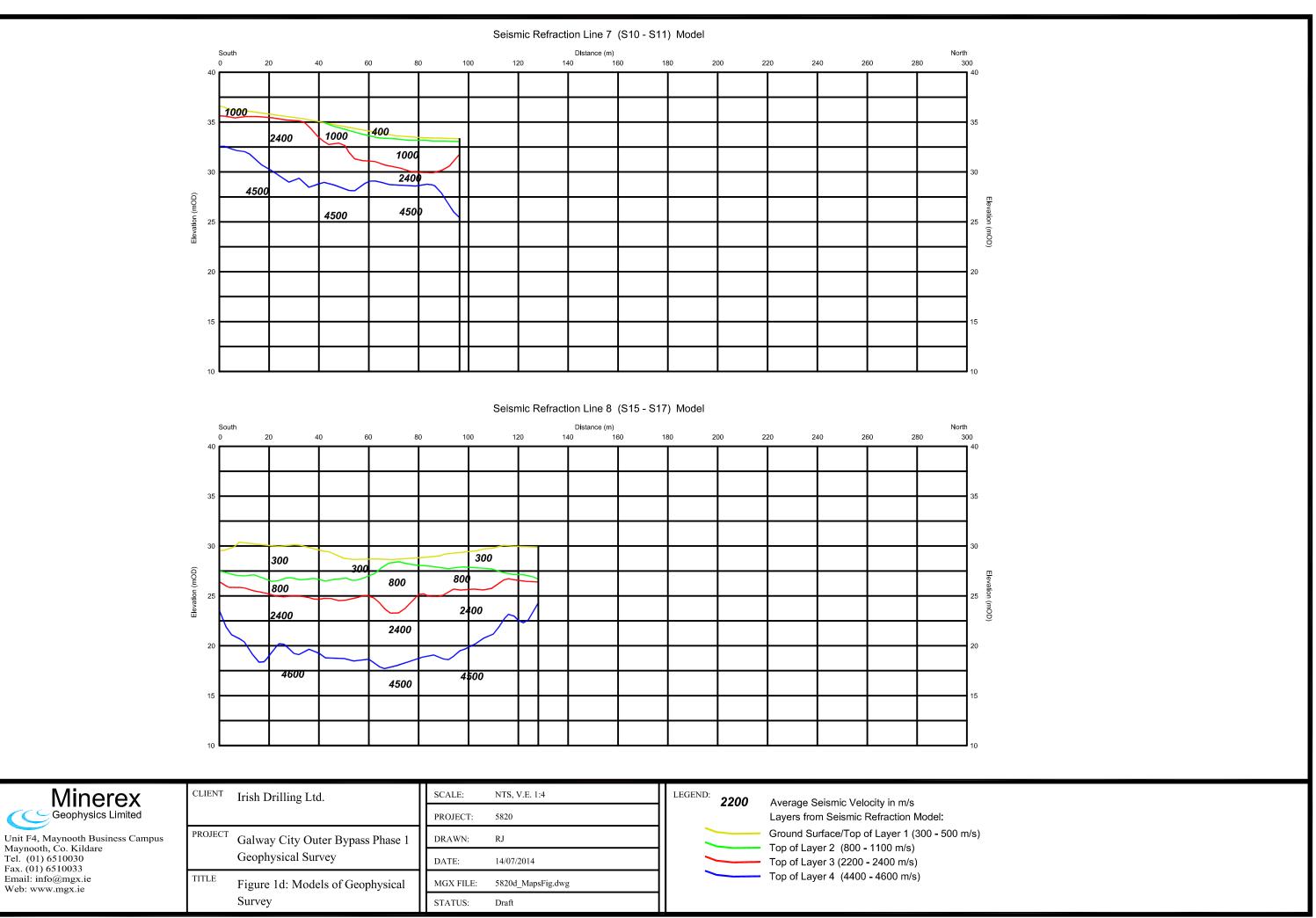


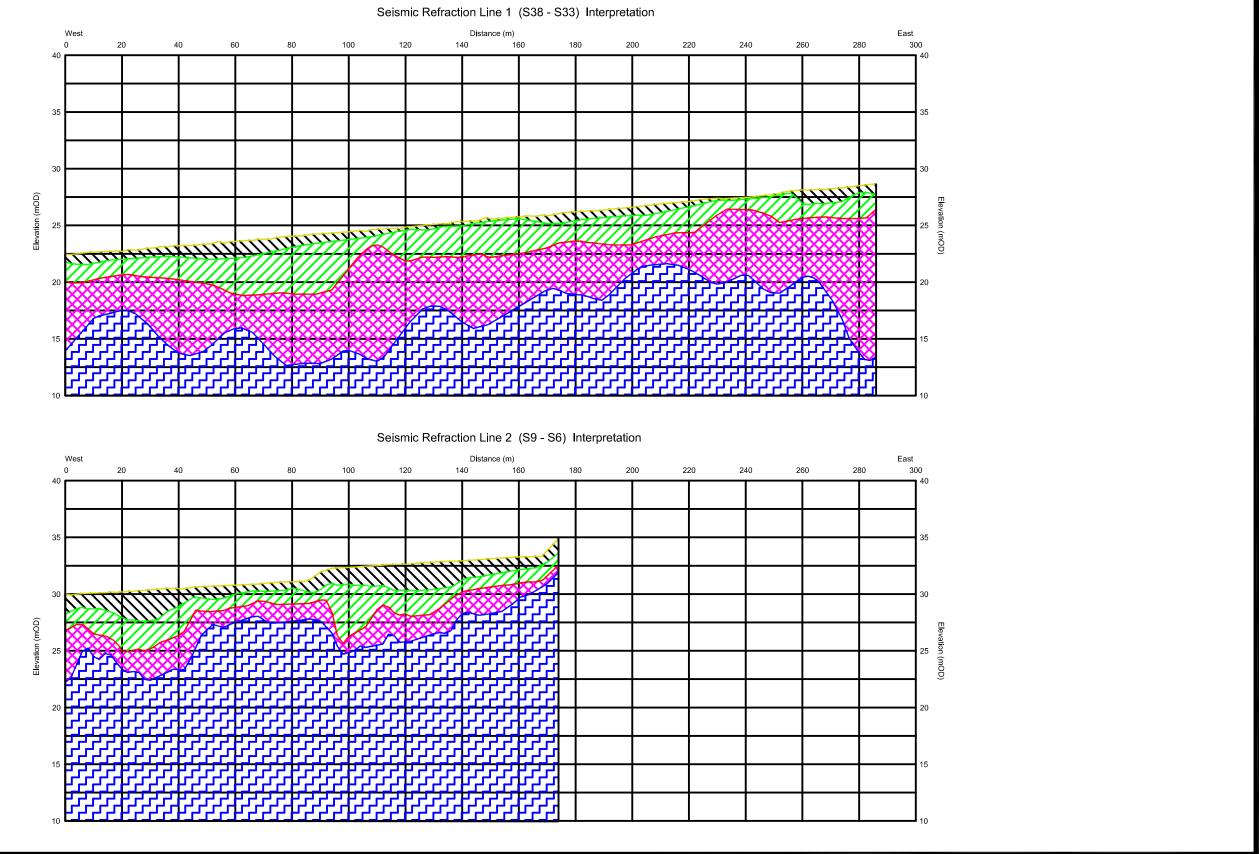





Minerex	CLIENT	Irish Drilling Ltd.	SCALE:	NTS, V.E. 1:4	LEGEND:	2200	Average Seismic Velocity in m/s
Geophysics Limited			PROJECT:	5820		Layers from Seismic Refraction Model:	
Unit F4, Maynooth Business Campus	 PROJECT Galway City Outer Bypass Phase 1 Geophysical Survey TITLE Figure 1a: Models of Geophysical 	Coophygical Survey	DRAWN:	RJ			Ground Surface/Top of Layer 1 (300 - 500 m/s)
Maynooth, Co. Kildare Tel. (01) 6510030 Fax. (01) 6510033			DATE:	14/07/2014	\		
Email: info@mgx.ie Web: www.mgx.ie		MGX FILE:	5820d_MapsFig.dwg		Top of Layer 4 (4400 - 4600 m/s)	Top of Layer 4 (4400 - 4600 m/s)	
		Survey	STATUS:	Draft			

		Seismic Refraction Line 5 (S	26 - S20) Model
Minerex	CLIENT Irish Drilling Ltd.	SCALE: NTS, V.E. 1:4	LEGEND: 2200 Average Seismic Velocity in m/s
Geophysics Limited		PROJECT: 5820	Layers from Seismic Refraction Model:
Unit F4, Maynooth Business Campus	PROJECT Galway City Outer Bypass Phase 1	DRAWN: RJ	Ground Surface/Top of Layer 1 (300 - 500 m/s) Top of Layer 2 (800 - 1100 m/s)
Maynooth, Co. Kildare Tel. (01) 6510030 Fax. (01) 6510033	Geophysical Survey	DATE: 14/07/2014	Top of Layer 3 (2200 - 2400 m/s)
Email: info@mgx.ie Web: www.mgx.ie	TITLE Figure 1b: Models of Geophysical	MGX FILE: 5820d_MapsFig.dwg	Top of Layer 4 (4400 - 4600 m/s)
Ű,	Survey	STATUS: Draft	

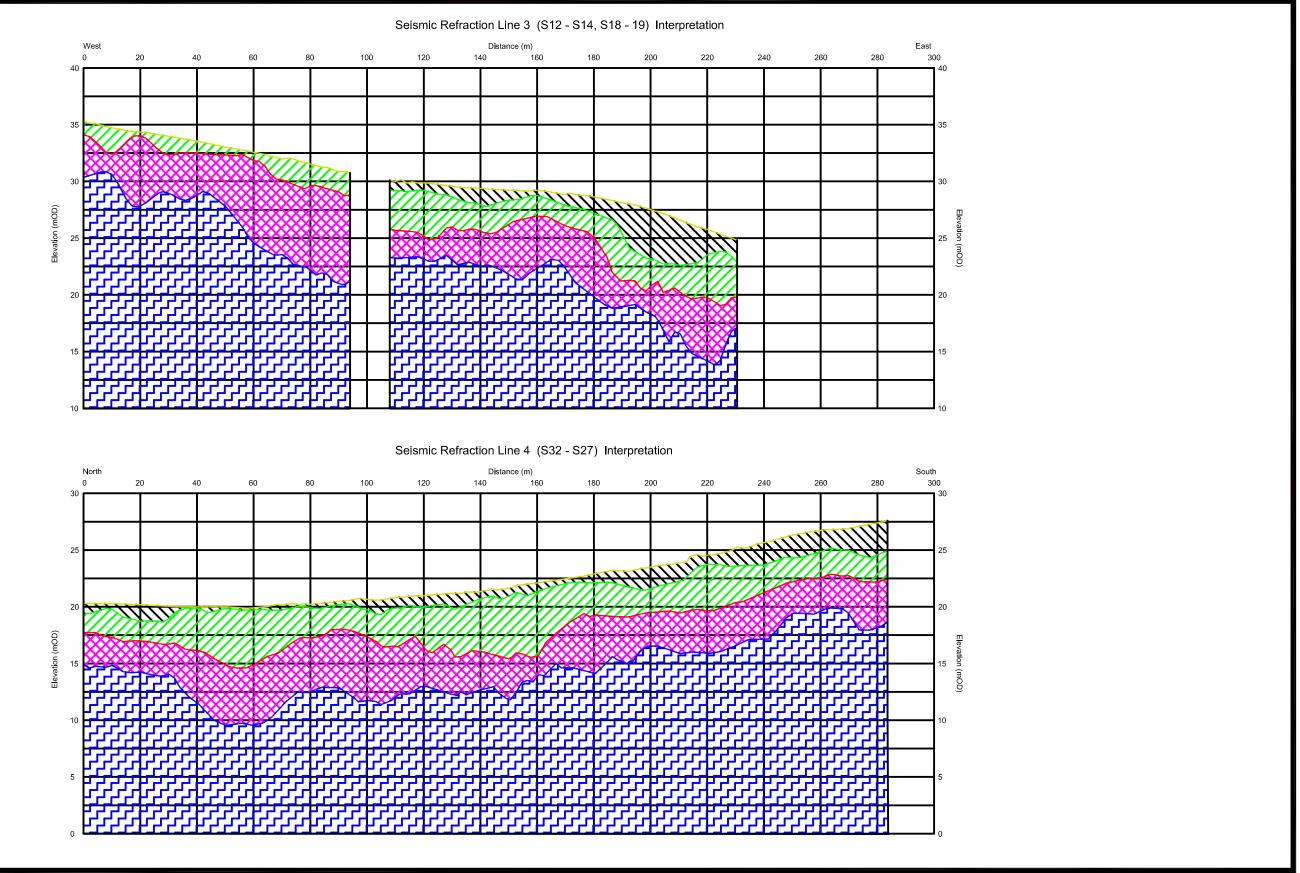



Unit F4, Maynooth Business Campus Maynooth, Co. Kildare Tel. (01) 6510030 Fax. (01) 6510033 Email: info@mgx.ie Web: www.mgx.ie

CLIENT	Irish Drilling Ltd.	SCALE:	NTS, V.E. 1:4	LEGEND:	2200	Average Seismic Velocity in m/s
		PROJECT:	5820			Layers from Seismic Refraction Mode
PROJECT	Galway City Outer Bypass Phase 1	DRAWN:	RJ			Ground Surface/Top of Layer 1 (300 - Top of Layer 2 (800 - 1100 m/s)
	Geophysical Survey	DATE:	14/07/2014			Top of Layer 3 (2200 - 2400 m/s)
TITLE	Figure 1c: Models of Geophysical	MGX FILE:	5820d_MapsFig.dwg			Top of Layer 4 (4400 - 4600 m/s)
	Survey	STATUS:	Draft			

Пе (mOD) Ē (mOD)

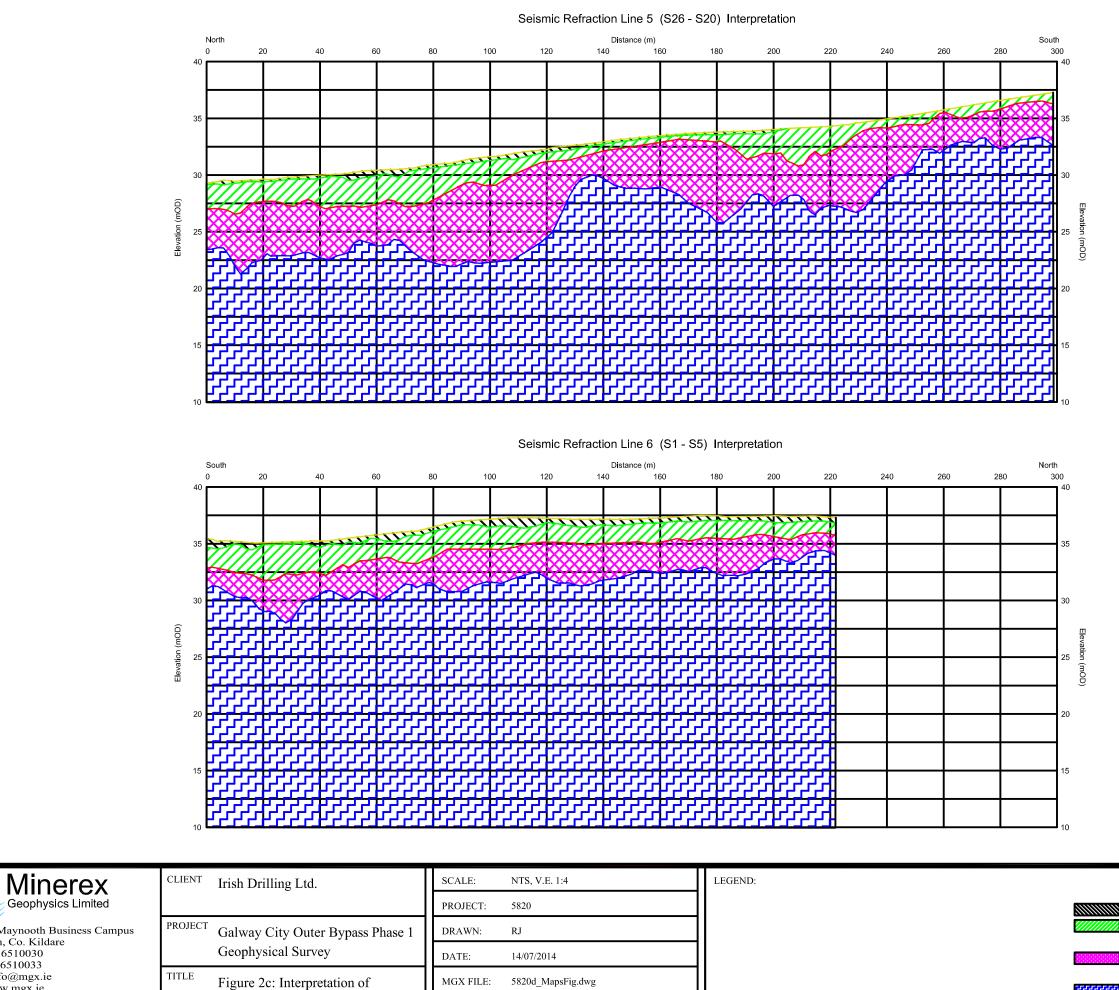
Maynooth, Co. Kildare	
Tel. (01) 6510030	
Fax. (01) 6510033	
Email: info@mgx.ie	
Web: www.mgx.ie	


Minerex	CLIENT Irish Drilling Ltd.	SCALE: NTS, V.E. 1:4	LEGEND:
Geophysics Limited		PROJECT: 5820	
Unit F4, Maynooth Business Campus	PROJECT Galway City Outer Bypass Phase 1	DRAWN: RJ	
Maynooth, Co. Kildare Tel. (01) 6510030 Fax. (01) 6510033	Geophysical Survey	DATE: 14/07/2014	
Email: info@mgx.ie Web: www.mgx.ie	TITLE Figure 2a: Interpretation of	MGX FILE: 5820d_MapsFig.dwg	
	Geophysical Survey	STATUS: Draft	

Integrated Combined Interpretation:

 Soft/loose Topsoil/Overburden/Pavement Layers
 Firm to Stiff/Dense Overburden or very weathered Granite

- 3 Poor to Fair Weathered Granite or hard/very dense Overbruden
- 4 Strong Granite


Minerex	CLIENT Irish Drilling Ltd.	SCALE: NTS, V.E. 1:4	LEGEND:
Geophysics Limited		PROJECT: 5820	
Unit F4, Maynooth Business Campus	PROJECT Galway City Outer Bypass Phase 1	DRAWN: RJ	
Maynooth, Co. Kildare Tel. (01) 6510030 Fax. (01) 6510033	Geophysical Survey	DATE: 14/07/2014	
Email: info@mgx.ie Web: www.mgx.ie	o@mgx.ie TITLE Figure 2b: Interpretation of	MGX FILE: 5820d_MapsFig.dwg	
	Geophysical Survey	STATUS: Draft	

Integrated Combined Interpretation:

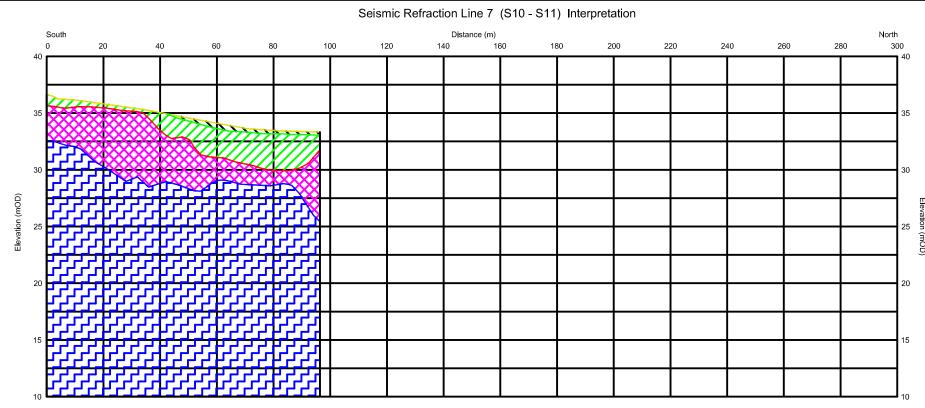
 Soft/loose Topsoil/Overburden/Pavement Layers
 Firm to Stiff/Dense Overburden or very weathered Granite

- 3 Poor to Fair Weathered Granite or hard/very dense Overbruden
- 4 Strong Granite

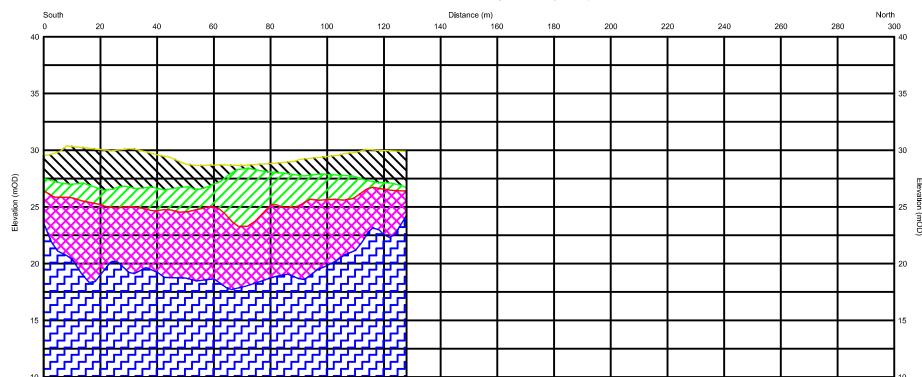
Unit F4, Maynooth Business Campus Maynooth, Co. Kildare Tel. (01) 6510030 Fax. (01) 6510033 Email: info@mgx.ie Web: www.mgx.ie

Geophysical Survey

STATUS:


Draft

 \sim


Integrated Combined Interpretation:

1 Soft/loose Topsoil/Overburden/Pavement Layers 2 Firm to Stiff/Dense Overburden or very weathered Granite

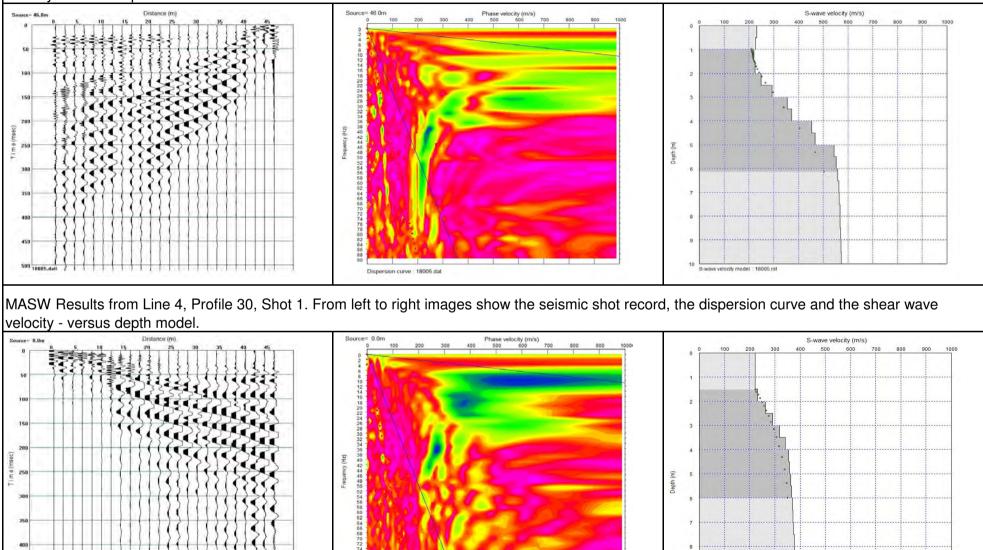
- 3 Poor to Fair Weathered Granite or hard/very dense Overbruden
- 4 Strong Granite

Seismic Refraction Line 8 (S15 - S17) Interpretation

Minerex	CLIENT Irish Drilling Ltd.	SCALE: NTS, V.E. 1:4	LEGEND:
Geophysics Limited		PROJECT: 5820	
Unit F4, Maynooth Business Campus	PROJECT Galway City Outer Bypass Phase 1	DRAWN: RJ	
Maynooth, Co. Kildare Tel. (01) 6510030 Fax. (01) 6510033	Geophysical Survey	DATE: 14/07/2014	
Email: info@mgx.ie Web: www.mgx.ie	TITLE Figure 2d: Interpretation of	MGX FILE: 5820d_MapsFig.dwg	
·····	Geophysical Survey	STATUS: Draft	


Division (mOD)

Integrated Combined Interpretation:

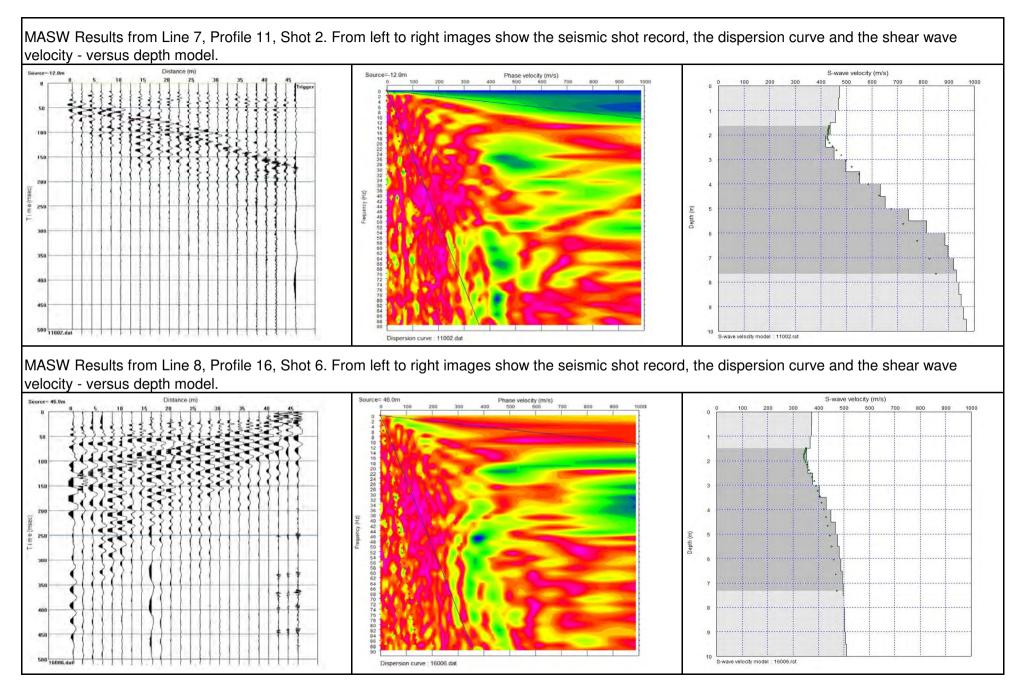


 Soft/loose Topsoil/Overburden/Pavement Layers
 Firm to Stiff/Dense Overburden or very weathered Granite

- 3 Poor to Fair Weathered Granite or hard/very dense Overbruden
- 4
 - 4 Strong Granite

MASW Results from Line 3, Profile 18, Shot 5. From left to right images show the seismic shot record, the dispersion curve and the shear wave velocity - versus depth model.

500 30001.dat


450

10

S-wave velocity model : 30001.rst

Dispersion curve : 30001.dat

MASW Results from Line 5, Profile 24, Shot 6. From left to right images show the seismic shot record, the dispersion curve and the shear wave velocity - versus depth model. Source= 46.0m S-wave velocity (m/s) Source= 46.0m Phase velocity (m/s) 400 500 600 MANANA ANA 30 32 34 36 30 40 44 46 52 55 55 55 60 2 66 60 70 Ê 80 82 84 86 88 S-wave velocity model : 24006.rst Dispersion curve : 24006.dat MASW Results from Line 6, Profile 1, Shot 5, Traces 13-24. From left to right images show the seismic shot record, the dispersion curve and the shear wave velocity - versus depth model. S-wave velocity (m/s) Source= 46.0m Distance (m) Source= 46.0m Phase velocity (m/s) 500 600 700 400 800 10 Ê 30 351 45 500 1005-13-24.dat 10 S-wave velocity model : 1005-13-24.rst Dispersion curve : 1005-13-24.dat

